Faut-il revoir la théorie des chambres magmatiques sous les volcans ?

La volcanologie, comme toutes les autres sciences en pleine vitalité, évolue de sorte que ses modèles s’affinent et sont partiellement réfutés au cours du temps. C’est ce qui arrive sous nos yeux avec celui des chambres magmatiques qui se révèlent plus complexes que ce que l’on pensait, comme l’explique Jacques-Marie Bardintzeff avec un travail publié par ses collègues volcanologues britanniques.

Il y a 20 ans cette année, le grand volcanologue français Haroun Tazieff décédait. La science volcanologique a fait de nombreux progrès depuis mais il reste encore beaucoup à découvrir et à comprendre. En atteste le simple fait que nous ne sommes toujours pas capables de prédire les éruptions volcaniques, si ce n’est, parfois, que quelques heures voire quelques jours à l’avance. Sans doute Haroun Tazieff aurait été intéressé par l’article publié dans le journal Nature et provenant de volcanologues anglo-saxons, de l’Imperial College London et de l’université de Bristol, dont le célèbre Stephen Sparks. Les travaux menés par ces chercheurs remettent en cause les idées que l’on se fait généralement sur les chambres magmatiques, que l’on croit présentes sous les volcans, en se basant notamment sur des modèles numériques sur ordinateurs de la physique et de la chimie des processus magmatiques. Haroun Tazieff avait déjà envisagé en son temps l’utilité de tels modèles pour la volcanologie. En résumé, il n’y aurait pas vraiment de chambres magmatiques sous les volcans – selon l’image que l’on s’en fait souvent -, c’est-à-dire une sorte d’immense cavité remplie de magma en fusion. À la place, est introduit le concept de « magma mush ».

Remettre en cause ce que l’on pensait des chambres magmatiques ne semble pas une mince affaire. Jacques-Marie Bardintzeff explique l’intérêt des travaux exposés par ses collègues : « ils confirment et développent en détail des idées que l’on avait depuis quelque temps déjà pour rendre compte de certains problèmes rencontrés avec le modèle classique de chambre magmatique, développé notamment à partir des observations faites dans les années 1930 sur le massif de Skaergaard sur la côte Est du Groenland ». Jacques-Marie Bardintzeff précise que « cela fait quelque temps déjà que les volcanologues anglo-saxons utilisent le terme anglais de mush pour décrire le magma enrichi en cristaux rassemblé en profondeur sous les volcans, et que l’on peut traduire par « bouillie », bien que ce terme français ne corresponde pas vraiment à la réalité ».

Qu’est-ce qui se cache derrière ce terme ? Tout simplement, qu’à la place des chambres magmatiques remplies de magma dans lesquelles se forment et nagent quelques cristaux – que l’on peut trouver dans les laves après une éruption -, on aurait à l’inverse majoritairement des cristaux entre lesquels existe une petite portion de liquide fondu, pouvant circuler par percolation comme l’eau à travers du café ou du sable. D’après le nouveau travail des chercheurs britanniques, qui permet de mieux rendre compte des données géophysiques, géochimiques et minéralogiques associées aux volcans, les chambres magmatiques au sens classique du terme seraient en fait sous forme de poches de magma transitoires juste avant les éruptions.

Volcan Kilauea Hawaï

Une éruption du volcan Kilauea à Hawaï a émis de grandes quantités de laves formant la cascade que l’on voit sur cette photo (Source : USGS).

Le fait que les chambres magmatiques soient en fait des régions qui ressemblent plus à de la neige fondue qu’à des poches d’eau liquide était soupçonné depuis un moment déjà par les sismologues. « On n’arrivait pas vraiment à former d’images nettes de ces chambres par enregistrement sismique », explique Jacques-Marie Bardintzeff. Ce qui rétrospectivement se comprend, si l’on n’a effectivement pas de discontinuité nette entre le « mush » et la roche encaissante la plupart du temps.

Si nous devions faire un bilan de ce qu’il faut sans doute penser actuellement des chambres magmatiques sous un volcan, l’on aboutirait en gros à ceci. D’abord, rappelons que la croûte n’est pas une surface refroidie et solidifiée flottant sur un manteau en fusion et liquide, comme on pourrait le penser en regardant un lac de lave tel celui de l’Erta Ale en Éthiopie. On le sait au moins depuis l’essor de la sismologie au tout début du XXe siècle car, contrairement aux ondes sismiques compressives dites P qui arrivent les premières, les ondes transversales secondaires (S) ne se propagent pas dans des liquides. On sait donc depuis plus d’un siècle que le manteau, qui transmet les ondes S, est solide même si à l’échelle des temps géologiques – dont l’unité est le million d’années -, il se comporte bel et bien comme un « fluide » visqueux chaud en convection.

Nouveau concept chambre magmatique

Une illustration du nouveau concept de chambre magmatique que les volcanologues étudient depuis au moins une dizaine d’années. Des poches de magma en forme de lentille avec très peu de cristaux (melt lens) se forment transitoirement dans une région où dominent les cristaux sur le liquide (crystal mush) pendant des milliers voire des dizaines de milliers d’années. Du magma frais s’injecte parfois dans la chambre magmatique, maintenant un certain niveau de fusion et pouvant déclencher une éruption, par son mélange avec un magma évolué. (Source : Gareth Fabbro).

Des masses de matières chaudes, remontant vers la surface de la Terre, se décompriment de sorte qu’elles se mettent à fondre partiellement au niveau des cristaux d’olivines qui composent les péridotites du manteau supérieur. Le liquide basaltique produit est moins dense que les roches encaissantes si bien qu’il a tendance à remonter lui aussi vers la surface sous l’effet de la pression d’Archimède. Un processus de percolation du magma, analogue à celui de l’eau dans des milieux poreux, se met alors en place. Le magma va se concentrer dans des zones de fracture qui vont s’agrandir par fracturation hydraulique. Ce mécanisme n’a commencé à être bien compris qu’avec les travaux d’un des pères de la théorie de la tectonique des plaques, Dan McKenzie, qui a publié un article retentissant sur le sujet en 1984.

Nous en avons donc déduit que le magma finissait par se concentrer entre quelques dizaines et une centaine de kilomètres de profondeur dans des grandes cavités : les fameuses chambres magmatiques. L’analyse des laves en surface montrait que celles-ci évoluaient chimiquement au cours de milliers et de dizaines de milliers d’années d’éruptions successives. On trouvait même des cristaux se condensant à hautes températures, comme les zircons, âgés d’environ 100.000 ans en arrivant en surface. Il fallait en conclure que les chambres magmatiques existaient pendant une longue période géologique durant laquelle des processus de différentiation et ségrégation opéraient, perturbés par des remontées de liquide basaltique frais. Ces processus pouvaient d’ailleurs se voir dans les rares chambres magmatiques figées connues et accessibles en surface du fait de l’érosion, comme la fameuse intrusion de Skaergaard dont nous avons parlé précédemment.

Toutefois, des études plus fines, aussi bien du point de vue de la pétrologie que de la géophysique ont montré des contradictions, pointant vers la nécessité d’introduire un modèle plus complexe, qui avait donc conduit les volcanologues à introduire le concept de réservoir mush magmatique sous les volcans. L’étude de Stephen Sparks et ses collègues élimine en fait une difficulté, en montrant comment le processus de percolation dans ce magma peut conduire à la formation d’une zone plus chaude où les cristaux fondent avec la concentration de magma. Ceci explique pourquoi nous avons transitoirement de grandes quantités de liquide, très appauvri en cristaux, qui peuvent être rapidement formées et extraites du manteau pour rejoindre la surface en donnant des éruptions spectaculaires comme celle de cette année à Hawaï.

Source : Futura-Sciences

Vous pouvez consulter, sur le site d’Archipel des Sciences, l’exposition « Le volcanisme« , ainsi que la page Risques majeurs.

Publicités

Répondre

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l'aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.